Образовательный минимум

Полугодие	1
Предмет	Геометрия
Класс	11

_	T. ()
Расстояние между точками, или длина вектора АВ.	$A(x_1; y_1; z_1)$ и $B(x_2; y_2; z_2)$
	$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
Координаты середины отрезка с	$X_1 + X_2$ $Y_1 + Y_2$ $Z_1 + Z_2$
координаты середины отрезка с концами $A(x_1; y_1; z_1); B(x_2; y_2; z_2)$	$x = \frac{x_1 + x_2}{2}; \qquad y = \frac{y_1 + y_2}{2} z = \frac{z_1 + z_2}{2}$ $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = R^2$
Уравнение окружности с радиусом	$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = R^2$
R и с центром $(x_0; y_{0}; z_0)$	
Если $(x_1; y_1; z_1)$ и $B(x_2; y_2; z_2)$, то	$\{x_2-x_1; y_2-y_1; z_2-z_1\}$
координаты вектора АВ:	(2 1) 52 51, 2 1)
Сложение и вычитание векторов	$\vec{a} \{a_1; a_2; a_3;\} \pm \vec{b} \{b_1; b_{21}; b_3\} =$
	$\{a_1 \pm b_1 \pm a_3; a_2 \pm b_2 \pm b_3\}$
Умножение вектора на число <i>\lambda</i>	$\left\{\overline{a_1; a_2; a_3}\right\} \lambda = \left\{\lambda a_1; \lambda a_2; \lambda a_3\right\}$
Скалярное произведение векторов	$ \begin{aligned} \overline{a_1; a_2; a_3} \lambda &= \overline{\lambda a_1; \lambda a_2; \lambda a_3} \\ \overline{a}_{\{a_1; a_2; a_3; \};} \overline{b}_{\{b_1; b_{21}; b_3\}} \end{aligned} $
	$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$
Косинус угла между векторами	
$\vec{a} \{a_1; a_2; a_3; \}; \vec{b} \{b_1; b_{21}; b_3\}$	
$\{a_1, a_2, a_3, \}, = \{a_1, a_2\}, a_3\}$	$\left(\begin{array}{c} \stackrel{\wedge}{\rightarrow} \stackrel{\rightarrow}{\rightarrow} \\ \stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow} \end{array}\right) \qquad a_1 e_1 + a_2 e_2 + a_3 e_3$
	$\cos\left(\overrightarrow{a}, \overrightarrow{b}\right) = \frac{a_1 e_1 + a_2 e_2 + a_3 e_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \bullet \sqrt{e_1^2 + e_2^2 + e_3^2}}$